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ABSTRACT
Starting from the first investigations with strictly functional lan-
guages, reactive programming has been proposed as THE program-
ming paradigm for reactive applications. The advantages of designs
based on this style over designs based on the Observer design pat-
tern have been studied for a long time. Over the years, researchers
have enriched reactive languages with more powerful abstractions,
embedded these abstractions into mainstream languages – including
object-oriented languages – and applied reactive programming to
several domains, like GUIs, animations, Web applications, robotics,
and sensor networks.

However, an important assumption behind this line of research –
that, beside other advantages, reactive programming makes a wide
class of otherwise cumbersome applications more comprehensible
– has never been evaluated. In this paper, we present the design
and the results of the first empirical study that evaluates the effect
of reactive programming on comprehensibility compared to the
traditional object-oriented style with the Observer design pattern.
Results confirm the conjecture that comprehensibility is enhanced by
reactive programming. In the experiment, the reactive programming
group significantly outperforms the other group.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Languages, Experimentation, Human Factors

Keywords
Reactive Programming, Empirical Study, Controlled Experiment

1. INTRODUCTION
Reactive applications are a wide class of software that needs to re-

spond to internal or external stimuli with a proper action. Examples
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of such applications include user-interactive software, like GUIs
and Web applications, graphical animations, data acquisition from
sensors and distributed event-based systems.

Over the last few years, reactive programming (RP) has gained
the attention of researchers and practitioners for the potential to
express otherwise complex reactive behavior in intuitive and declar-
ative way. RP has been firstly introduced in Haskell. Influenced
by these approaches, implementations of RP have been proposed in
several widespread languages, including Scheme [3], Javascript [29]
and Scala[27, 40]. Recently, concepts inspired by RP have been ap-
plied to production frameworks like Microsoft Reactive Extensions
(Rx) [25], which received great attention after the success story of
the Netflix streaming media provider. This growing interest around
RP is also witnessed by the success of the Coursera online class
“Principles of Reactive Programming”, in winter semester 2013-14.
Finally, a lot of attention in the front-end developers community is
revealed by the increasing number of libraries, inspired by the Flap-
jax reactive language [29], that implement RP principles, among the
others React.js, Bacon.js, Knockout, Meteor and Reactive.coffee.

The relevance of RP comes from the well-known complexity of
reactive applications, which are hard to develop and understand
because of the mixed combination of data and control flow. The
Observer design pattern [14] is widely used for such applications.
It has the advantage of decoupling observers from observables.
But, when it comes to program readability, it does not make things
easier, because of dynamic registration, side effects in callbacks,
and inversion of control.

In contrast, RP supports a design based in data flows and time-
changing values: the programmer states which relations should
be enforced among the variables that compose a reactive program
and the RP runtime takes care of performing all the required up-
dates. Dependencies are defined explicitly instead of being hidden
in the control flow, combination can be guided by types opposite
to callbacks that return void, contrarily to the Observer pattern con-
trol is not inverted and less boilerplate is required since collecting
dependencies and performing the updates is automatized by the
framework. Based on these arguments, it has indeed been argued
that RP greatly improves over the traditional Observer pattern used
in OO programming both (i) from the software design perspective as
well as (ii) from the perspective of facilitating the comprehensibility
of the software [2, 3, 26, 29].

Yet, not enough empirical evidence has been ever provided in
favor of the claimed advantages of RP. Preliminary empirical results
seem to confirm the claimed design benefits (e.g., more compos-
ability) of RP [40]. However, even preliminary evidence is missing
regarding the claim that RP enhances comprehensibility. Despite the
intuition about its potential, the reactive style is not obviously more
comprehensible than the Observer design pattern. For example, in
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the Flapjax paper [29], a Javascript application based on Observer
is compared against a functionally equivalent RP version. The au-
thors argument that the RP version is much easier to comprehend.
However, the reader is warned that: “Obviously, the Flapjax code
may not appear any ‘easier’ to a first-time reader”. Doubting, at
this point, is legitimate: does RP really make reactive applications
easier to read? Also, it is unclear how much expertise is required to
find a RP program “easier” – if ever.

To fill the gap, this paper provides the first empirical evaluation
of the impact of RP on program comprehension compared to the
traditional technique based on the Observer design pattern. The
experiment involves 38 subjects that where divided into a RP group
and an OO group. They were shown a reactive application and
their understanding of the reactive functionalities was measured.
The experiment considers several aspects including (i) correctness
of comprehension, (ii) required time and (iii) programming skills
needed for correct comprehension. To the best of our knowledge,
such a study has never been attempted before. All experimental data
and the artifacts developed for this work are available for download1,
including the tasks that compose the experiment, the raw results and
the complete statistical analysis not included in this paper for space
reasons.

2. MOTIVATION
In this section, we introduce reactive programming and discuss

the weaknesses of the Observer pattern that can potentially reduce
program understandability.

Reactive Programming in a Nutshell. Reactive programming sup-
ports first-class constraints among program values. These con-
straints are automatically enforced by the runtime. In the rest, we
adopt the terminology of REScala [40] and Scala.react [27]. Con-
straints are expressed as signals, a language concept for expressing
functional dependencies among values in a declarative way. A signal
can depend on variables without further dependencies (i.e., vars) or
on other signals. When any of the dependency sources changes, the
expression defining the reactive value is automatically recomputed
by the language runtime to keep the reactive value up-to-date.

The general form of a signal s is Signal{expr}, where expr is a
standard expression. When expr is evaluated, all Signal and Var
values it refers to are registered as dependents of s; any subsequent
change of them triggers a reevaluation of s.

Consider the example in Figure 1a. The code snippet defines two
vars a and b. When s is declared (Line 3), the runtime collects the
values it depends on (i.e., a and b). When a is updated (Line 6),
all signals that (even indirectly) depend on it – s in this case – are
automatically updated.

As the reader has probably already noticed, the syntax of the
example is a bit cluttered because of the implementation of RP
as an embedded Scala DSL. Assigning a var requires ()= which is
translated into a call to the apply method on the var object. Similarly,
vars and signals must appear with the method call notation () in
signal expressions. More details can be found in [27, 40].

Reactivity the Old School: The Observer Pattern. In OO lan-
guages, reactive applications are usually developed using the Ob-
server design pattern. This solution has gained wide popularity be-
cause it decouples observers from observables, i.e., observables do
not know (hold a static reference to) observers in advance. Instead,
observers register themselves to the observable they are interested
in at runtime [14]. Detractors argue that programs are hard to reason
about. Below, we summarize the main points that support this argu-

1http://www.stg.tu-darmstadt.de/research/

1 val a = Var(1)
2 val b = Var(2)
3 val s = Signal{ a() + b() }
4

5 println(s.getVal()) // 3
6 a()=4
7 println(s.getVal()) // 6
8

9

10

11

12

13

(a)

1 val a = Observable(1)
2 val b = Observable(2)
3 val c = a + b
4

5 a.addObserver( _ =>{
6 c = a + b
7 })
8 b.addObserver( _ =>{
9 c = a + b

10 })
11 println(c.get()) // 3
12 a.set(4)
13 println(c.get()) // 6

(b)

Figure 1: Functional dependencies using signals in RP (a) and
the Observer design pattern in OO programming (b).

mentation. For convenience, we refer to the example in Figure 1b,
which implements the same functionality as Figure 1a but with the
Observer design pattern.

(i) The natural dependency among program entities is inverted.
Conceptually, change flows from observables to observers,
but in code, observers call the observable to register. For
example, c is registered calling addObserver on a (Line 5).

(ii) Programmers need to inspect a lot of code to figure out the re-
active behavior because functional dependencies are implicit.
To define the dependency from a to b, programmers register a
handler to a that updates c. When readers encounter c in the
code for the first time, there is no sign that the value perma-
nently depends on another one, since the update is performed
by a side effect in the handler potentially anywhere in the
program.

(iii) Code is cluttered. Reactive applications are more verbose and
the application logic is hidden behind the machinery required
by the Observer design pattern.

Executive Summary: Call to Arms. It is, however, not clear, what
the impact of the previous issues is. For example, (i) contributes to
make OO applications too complex to read at first sight, but, with
experience, programmers are likely to get used to inversion of con-
trol. For (ii), the handler still expresses the functional dependency,
even if indirectly. Concerning (iii), there is no evidence that the Ob-
server design pattern clutters programs up to the point that they are
significantly harder to read than with an alternative design. In sum-
mary, the claims that RP addresses the aforementioned issues and
improves program comprehension should be evaluated empirically.

3. STUDY DEFINITION
The claimed advantages of RP include increased composability,

abstraction over state, automatic memory management, enforcement
of consistency guarantees during change propagation and ease of
comprehension [2, 3, 26, 29, 40]. In this work, we limit the scope to
program comprehension. We argue that this aspect is crucial because
programs are written once but read many times: “Programs must
be written for people to read, and only incidentally for machines to
execute” [1]. We also consider a single alternative to RP, i.e., OO
programming and the Observer design pattern because it is the most
common solution for reactive applications.
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1 object Squares_Reactive extends SimpleSwingApplication {
2

3 //−− APPLICATION LOGIC−−−−−−−−−−−−−−−−−−−−
4 object square1 {
5 val position = Signal {
6 Point(time().s ∗ 100, 100)
7 }
8 }
9 object square2 {

10 val v = Signal {
11 time().s ∗ 100
12 }
13 val position = Signal {
14 Point(time().s ∗ v(), 200)
15 }
16 }
17

18 // painting components
19 (square1.position.changed || square2.position.changed) += {
20 _ => Swing onEDT { top.repaint }
21 }
22

23 //−− Graphics−−−−−−−−−−−−−−−−−−−−−
24 lazy val panel: RePanel = new RePanel {
25 override def paintComponent(g: Graphics2D) {
26 super.paintComponent(g)
27 g.fillRect(
28 square1.position.getValue.x.toInt − 8,
29 square2.position.getValue.y.toInt − 8,
30 16, 16)
31 g.fillRect(
32 square1.position.getValue.x.toInt − 8,
33 square2.position.getValue.y.toInt − 8,
34 16, 16)
35 }
36 }
37 lazy val top = new MainFrame {
38 preferredSize = new Dimension(800, 400)
39 contents = panel
40 }
41 }

(a)

1 object Squares_Observer extends SimpleSwingApplication {
2

3 //−− APPLICATION LOGIC−−−−−−−−−−−−−−−−−−−−
4 object square1 {
5 val position = Observable { Point(0, 0) }
6 addTimeChangedHandler { time =>
7 position set Point(time.s ∗ 100, 100)
8 }
9 }

10 object square2 {
11 val v = Observable { 0.0 }
12 val position = Observable { Point(0, 0) }
13

14 addTimeChangedHandler { time =>
15 v set time.s ∗ 100
16 updatePos(time, v.get)
17 }
18 v addObserver { v =>
19 updatePos(now, v)
20 }
21 def updatePos(time: Time, v: Double) {
22 position set Point(time.s ∗ v, 200)
23 }
24 }
25

26 // painting components
27 square1.position addObserver { _ => repaint }
28 square2.position addObserver { _ => repaint }
29 def repaint = Swing onEDT { top.repaint }
30

31 //−− Graphics−−−−−−−−−−−−−−−−−−−−−
32 lazy val panel: RePanel = new RePanel {
33 override def paintComponent(g: Graphics2D) {
34 super.paintComponent(g)
35 g.fillRect(
36 square1.position.getValue.x.toInt − 8,
37 square2.position.getValue.y.toInt − 8,
38 16, 16)
39 g.fillRect(
40 square1.position.getValue.x.toInt − 8,
41 square2.position.getValue.y.toInt − 8,
42 16, 16)
43 }
44 }
45 lazy val top = new MainFrame {
46 preferredSize = new Dimension(800, 400)
47 contents = panel
48 }
49 }

(b)

Figure 2: The Squares application implemented with RP (a) OO programming (b).

3.1 Object of the Experiment
The experiment focuses on 10 reactive programs. Each program

is implemented in two versions. The RP version is based on reactive
programming, i.e., signal and, when needed, events. The OO version
adopts the Observer pattern to implement reactivity.

The applications we developed belong to three categories. The
first category consists of synthetic applications (applications 1-4)
that define functional dependencies among values and propagate
changes when certain values are updated. These applications look
similar to Figure 1 except that the functional dependencies are more
complex. The second category consists of graphical animations
(applications 5-7), where shapes are displayed on a canvas and move
according to regular patterns. Graphical animations is a traditional
domain for reactive programming [8, 9]. The last category con-
sists of interactive applications (8-10) that require the user, e.g., to
click buttons or drag the mouse over a shape. These functionali-
ties are common in GUIs, another traditional domain for reactive
programming [3, 29].

An example of the applications we used is the Squares application
in Figure 2a (RP version) and Figure 2b (OO version). The example
belongs to the animations category. Code is reduced for presentation
purposes. The Squares application draws two moving squares on
a canvas. To give an intuition of the execution, a screenshot is
provided in Figure 3 (note that subjects did not have access to it).
The upper and the lower square move horizontally from left to right
at constant speed – respectively, at increasing speed.

In the RP version (Figure 2a) the position signal in Line 5
models a time-changing value of type Point. The x coordinate of
the point depends on the time signal, the y coordinate is fixed. Every
time the time signal changes (defined elsewhere), a new point is
generated and assigned to the content of the position signal. The
position signal for the second square (Line 13) works similarly,
except that the x coordinate of the point (Line 14) depends on both
time and a speed signal v defined in Line 10. Line 19 triggers a
repainting in the asynchronous Swing events loop every time either
position of square1 or the position of square2 changes. Lines 24-39
setup the canvas and display the initial squares.
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Figure 3: The Squares graphical animation.

In the OO version (Figure 2b) the same functionalities are im-
plemented using the Observer pattern. Line 6 register a handler
to the observable time (defined elsewhere). The handler updates
the position variable in Line 5. The position variable is observ-
able and the handler in Lines 27-28 repaints the view every time
position changes. The definition of square2 follows the same
principles; the GUI setup in Lines 29-48 is unchanged from RP.

As the reader may have noticed, some functionalities, like time,
are defined elsewhere and accessed via import (not shown). This
is also the case for the reactivity machinery (signals and observers).
This choice helps to keep the application code short and is consistent
across the RP and the OO version.

3.2 Methodology
The experiment is composed of 10 tasks. In each task, a subject

is shown a reactive application and asked a question about the
application behavior. Crucially, questions and alternative choices
are formulated in a way that finding the correct answer requires to
understand the (whole) reactive logic of the application. An example
taken from the synthetic applications group is to ask the sequence
of values assumed by a variable that depends on other values in
the program once such values are updated. Answering the question
requires to inspect the application to detect functional dependencies
among values, i.e., which values are affected by a change and in
which order. An example from the interactive group comprises a
quick description of the application in the question (a canvas with a
box drawn on it) and asks which combination of actions from the
user produces a change of the color of the GUI. The correct answer
is “crossing two borders of the box while dragging the mouse”.
An example for the animations is shown in Figure 4 and refers to
Figure 2.

To practically run the experiment, we developed WebCompr, a
Web application for experiments on program comprehension that
allows users to complete the tasks via a Web browser. Existing
tools for controlled experiments we are aware of are not Web-based
(e.g., Biscuit [32] and Purity [15]) which considerably increases
the complexity of running the experiment. We relinquished using
existing Web platforms for in-browser homework and exams (e.g,
WebLab2) because they lack fine-grained time management, such
as setting an upper bound to each single task and recording the
task completion time – which are important for our experiment
(more on this later). WebCompr is highly customizable, collects
events from the user in a generic way and supports different kinds
of tasks, including some not used here, for example, blind tasks
where subjects can inspect an application for a limited amount of
time and are asked to complete a task afterward, without access to
the code anymore. WebCompr is available to the community to
run experiments similar to ours.

2http://department.st.ewi.tudelft.nl/weblab/

We use tasks as described above as a research instrument, because
they provide objective results and scale well (most controlled studies
hardly include more than 15 participants [12, 22] – we have 38 sub-
jects). Yet, the experiment requires a controlled environment with
on-site execution and staff supervision to make sure that developers
perform the task without external help. Also, we wanted to control
the training of the subjects, which prevented us from making the
experiment publicly available on the Internet and ask for volunteers.

We briefly discuss the alternatives we evaluated. In the think
loudly approach subjects comment the actions they are perform-
ing [12, 22]. A subsequent interview can clarify the motivations
behind each action [38]. This approach, however, does not allow to
collect objective measures and apply statistical tests. Other studies
measure software comprehension by artificially introducing a bug
in an application. Then, they measure the time subjects need to
fix a bug or perform a modification task [22]. However, bug fixing
requires not only to understand the application, but also to write
code that solves the problem. Thus, measurements would include
code-writing skills, not only comprehension (i.e., code-writing skills
is an additional factor of the experiment). This approach is suitable,
if the factor is balanced for the groups. In such a case, it doesn’t
influence the main factor we want to observe. In our experiment
however, the programming skills of the subjects in the RP and in the
OO style may be very diverse and there would be no way to separate
the influence of this factor from the main factor we want to observe
– program comprehension.

We decided to measure both time and correctness of the results.
Subjects were encouraged to provide an answer as quickly as pos-
sible, but it was also clarified that time becomes relevant only in
case the answer is correct. The reason for this design choice is to
simulate a realistic coding session in which developers inspect a
large project and spontaneously force themselves to spend on each
portion class only a limited amount of time to keep the analysis of
the whole software feasible.

For practical reasons, we needed to define an upper bound to the
time subjects can spend on each task. Also, it has been shown that,
without constraints, subjects may spend the entire time of the exper-
iment on a single task [36]. We fixed the available time to 5 minutes
for synthetic applications and to 10 minutes for the animations and
interactive applications, because the latter are slightly longer and
require to inspect more code. In practice, our estimations turned
out to be rather conservative. None of the subjects required the full
amount of time and most subjects provided that answer way earlier.
In any case, to avoid that attention decreases too much, the exper-
iment was designed to require no more than 2 hours (preliminary
tasks + experiment tasks).

Controlled experiments can be conducted with between-subjects
design or within-subject design. In between-subjects designs two
versions of the same application are proposed to different subjects.
In within-subjects designs each subject is given both versions [20].
In most empirical studies in software engineering, within-subject
design is usually preferred to balance the effect of the individual
skills factor, i.e., to reduce the variability due to heterogeneous skills
among the subjects. On the other hand, within-subjects designs
introduce learning effects, because subjects can apply the knowledge
gained when solving a task with a factor to the solution of the same
task with the other factor – a problem solved by between-subjects
designs. It has been shown [16, 28] that, if the learning effect is
small enough, proper experiment design still allows a within-subject
approach. In our case, however, this was no option. The learning
effect is likely to dominate the effect we want to measure, because
it is extremely easy for subjects to remember previous findings in
the experiment – a known challenge in controlled experiments on
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The following application draws two squares.
Which of the following sentences is true ?

a - The squares are moving at the same speed
b - The first square is moving at constant speed, the second

is moving at increasing speed
c - The squares have a fixed position
d - The first square is fixed, the second is moving

Figure 4: Example question.

program comprehension [36]. Therefore, we chose to design the
experiment as a between-subjects.

3.3 Study Context
The subjects of our study are students from a Software Engi-

neering course, held in the 4th year of study in Computer Science.
Subjects have similar academic background. They have been ex-
posed to Scala programming for at least the semester of the course.
All subjects learned Java since CS101 in their first semester and
used Java as their primary language in the rest of their studies. They
learned the Observer pattern since their Java first year course on
programming. Subjects were taught RP for an amount of two lec-
tures (1.5h+1.5h) and were assigned homework (8h+8h estimated)
that require to use RP to develop a reactive application from a given
specification.

We used WebCompr also to collect information about the sub-
jects, such as their programming experience, and required them
to self-evaluate as programmers. Since self-evaluation cannot be
considered reliable [21], subjects were also given 18 preliminary
tasks to solve as a measure of their programming knowledge. To
test a variety of different topics we necessarily kept each task very
short – the maximum amount of time available is a minute. Ques-
tions include concepts of OO programming, like inheritance and
polymorphism, functional programming, e.g., high-order functions
and pattern matching, and also RP, including events and signals. A
secondary goal of these tasks was to train students to correctly use
the Web application we used for the experiment.

Overall, the questions we asked were quite advanced and not
necessarily covered by the course. Subjects were given multiple
answers and a Don’t know option to avoid guessing. The assumption
behind this approach is that good programmers are likely to master
advanced features of the language. For example, a subject that
knows the behaviors of zip function3 on lists is likely to be a better
programmer than a subject that has never heard about it.

3.4 Research Questions and Hypotheses
We want to investigate the impact of RP on the comprehension

of reactive applications. Our research questions can be formulated
as follows. The fist research questions concerns correctness of
program comprehension in the RP and in the OO style:

RQ1: Does reactive programming increase correctness of
program comprehension?

The second research question investigates the role of time
(besides correctness) in comprehending RP programs on OO
programs:

3The zip function takes two lists and returns a list of pairs. Given
the input lists [li, i ∈ (0..n)] and [ri, i ∈ (0..n)] zip returns the list
[(li, ri), i ∈ (0..n)].

Figure 5: Subjects skills in RP group and OO group.

RQ2: Is comprehending reactive applications in the
RP style more or less time-consuming than in the OO style?

The third question concerns the relation between programming
skills and the level of comprehension of RP programs compared to
OO programs. The impact of programming expertise on the use or
RP is important to know whether RP is only useful for advanced
programmers or exhibits significant benefits also for beginners.

RQ3: Does comprehending RP programs require more
advanced programming skills than the OO style?

While previous research has speculated on RP overperforming
OO programming w.r.t. program comprehensibility, we take a neu-
tral approach. Consistently, in Section 4 we define 2-tailed statistical
tests to analyze our results.

4. STUDY RESULTS
In this section, we present the main contribution of our work, the

analysis of the statistical difference between the subjects in the RP
group and the subjects in the OO group. For the analysis we used
the SPSS statistical tool.

As a preliminary step, the tasks on programming skills allow us
to validate the hypothesis of equal distribution among the RP group
and the OO group. This assumption is needed to make sure that
the groups are not unbalanced for what programming skills concern.
A first inspection of the data shows similarity between the groups
(Figure 5). We performed a Mann-Whitney 2-tailed U test on the
cumulative result obtained in the skills questions. The result shows
that equality of the groups cannot be rejected (p=0.17).

4.1 Correctness
First, we analyze the data to provide an answer for RQ1. Cor-

rectness analysis concerns the amount of tasks for which the subject
correctly understood the behavior of the application and provided
the right answer. As the measure of correctness, we consider the
score (i.e., the cumulative number of correct answers) provided by
each student in all tasks.

We initially provide an overview of the results with descriptive
statistic. The mean score for the OO group and the RP group are
µ(score,OO) = 6.65 respectively µ(score,RP ) = 8.17. Figure 6
shows the cumulative scores obtained by the subjects in the RP
group and in the OO group. The plots seem to support the claim that
the RP group obtains a better result than the OO group. However, to
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Figure 6: Box plot of the correctness Ranks.

Group N Rank avg Rank sum p-value

RP 18 23.69 426.5 0.023
OO 20 15.73 314.5

Figure 7: Mann-Whitney U test for the Scores.

conclude that the difference is significant, it is necessary to apply an
appropriate statistical test.

To check if the difference between the scores of the RP group and
the OO group is significant, we formulate the following hypothesis
to be tested:

H0: The scores for the RP and for the OO test are drawn
from the same population.

The distribution of the score for both groups cannot be safely
assumed to exhibit a normal distribution. Testing normality with
the Shapiro-Wilk test gives pRP=0.127 and pOO=0.070, which does
not allow to assume the normality hypothesis. Since the under-
lying distribution is not known, we performed a non-parametric
Mann-Whitney U test. The result shows that, with high significance
(p=0.026) H0 can be rejected. After this result is established, the
rank sum indicates which approach dominates the other. As shown
in Figure 7, the rank sum for RP is significantly higher than the rank
sum for OO.

This result provides an answer to RQ1 and allows us to conclude
that the RP increases correctness of program comprehension.

4.2 Timing
In this section, we investigate the result of the experiment con-

cerning RQ2 – whether comprehension with RP requires more or
less time than with OO. This research question is closely related to
the results obtained for RQ1. As a matter of fact, in terms of cor-
rectness, the RP group does perform significantly better than the OO
group. However, timing remains an open issue. One may wonder if
the previous result can be biased by a significant difference in time
to understand an RP program or an OO program. RP can lead to
more correct results on average, but be much more time consuming
for developers.

Descriptive statistics suggests that the RP group requires less
time to complete each task. Figure 8 shows a box plot comparing
the time required by the RP group and the time required by the OO
group for each task. Since some tasks require 5 mins and other 10

mins (cf. Section 3), to make the results comparable, we normalize
the times for all exercises to a 0-1000 scale. To inspect significance
with statistical tests, we formulate the following null hypothesis:

H0: The time required to complete the RP and the OO
tasks are drawn from the same population.

In contrast to the correctness case, where binary data require a
cumulative score over all the tasks, for time data are continuous
and we can analyze each task separately. Similar to the previous
case, the underlying distribution is unknown and we perform a
non-parametric Mann-Whitney U test. The results are in Figure 9.
For exercises 1-2-3-4-7, H0 can be rejected with high significance
(p<0.05). In all those cases, the rank sum indicates that OO times
are higher than RP times (Figure 9, column “Ranks sum”), i.e., the
RP group is faster. In exercises 5-6-8-9-10, H0 cannot be rejected
(p>0.05).

One may argue that the last result measures the time it takes a
programmer to give the answer she believes is correct. We further
inspected our results to restrict the analysis to only the times that
the subjects needed to provide the correct answer. The results of the
Mann-Whitney U test are in Figure 10. For exercises 1-2-3-7-10,
the difference is significant (p<0.05) which rejects H0. The rank
sum indicates that OO dominates RP. In the other exercises H0

cannot be rejected. These observations confirm that the previous
conclusion still holds even when the analysis considers only the
correct answers. In summary, we answer RQ2 concluding that
comprehending programs in the RP style does not require more time
than comprehending their OO equivalent.

4.3 Programming Skills
In this section, we inspect the experimental data to answer RQ3 –

were more advanced programming skills required for comprehend-
ing RP applications. To this end, we correlate the programming
skills we measured for each subject with the correctness results in
the experiment. Figure 11 shows a scatter plot of the programming
skills and the cumulative score in the tasks for both the RP group
and the OO group (there are less data points than subjects because
some data points are identical for different subjects).

The figure suggests that in the OO group lower-skilled subjects
perform poorly in the tasks. Subjects that performs better are also
advanced programmers. In the RP group, instead, subjects do not
need advanced programming skills to reach high scores. In other
terms, the figure suggests absence of correlation for the RP group
and a positive correlation for the OO group, which we further in-
vestigate in the rest. At this stage of the analysis, the inspection of
the plots in Figure 11 shows a significant difference between the RP
group and the OO group.

We use a statistical test to estimate the significance of the
correlation of subjects’ score and skills. We define the following
hypotheses:

H0(RP ): There is no correlation between the score of the
subjects in the RP group in the experiment and the measured
programming skills.

H0(OO): There is no correlation between the score of the
subjects in the OO group in the experiment and the measured
programming skills.

The skills results cannot be safely assumed normally distributed.
We use the Kendall’s (τ ) test and Spearman’s rank correlation (ρ)
test. Even if this result is unlikely, we do not exclude negative
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Figure 8: Box plots for time in RP and OO Tasks.

Group N Rank avg Rank sum p-value

Task 1
RP 18 13.17 237

0.001OO 20 25.2 504

Task 2
RP 18 11.39 205

0OO 20 26.8 536

Task 3
RP 18 15.19 273.5

0.023OO 20 23.38 467.5

Task 4
RP 18 14.03 252.5

0.003OO 20 24.43 488.5

Task 5
RP 18 18.14 326.5

0.483OO 20 20.73 414.5

Task 6
RP 18 18.11 326

0.474OO 20 20.75 415

Task 7
RP 18 14.75 265.5

0.011OO 20 23.78 475.5

Task 8
RP 18 18.86 339.5

0.745OO 20 20.08 401.5

Task 9
RP 18 20.42 367.5

0.638OO 20 18.68 373.5

Task 10
RP 18 19.11 344

0.845OO 20 19.85 397

Figure 9: Mann-Whitney U test for Answer Times.

correlation and perform 2-tailed tests. The results are presented
in Figure 12, where we show the correlation coefficient r and the
p-value p for each case. For the RP group, we detected no significant
correlation, i.e.,H0 cannot be rejected. Surprisingly, in this case, the
correlation coefficient is even negative. For the OO group, instead,
both tests are statistically significant (p=0.039, p=0.045) andH0 can
be rejected. We conclude that in the OO group there is evidence of a
positive correlation (r=0.358, r=0.452) between scores and subjects
skills.

The analysis provides an answer for RQ3. We conclude that, in
contrast to OO where score results are correlated to programming
skills, with RP (advanced) programming skills are not needed to
understand reactive applications. This result suggests that RP lowers
the entrance barrier required to understand reactive applications.

5. DISCUSSION

5.1 Threats to Validity
In this section, we discuss factors that menace the validity of our

result and which countermeasures we adopted to reduce this risk.

Construct Validity. Threats to construct validity refer to the extent
to which the experiment does actually measure what the theory says
it does.

Our approach to measure program understanding requires careful
formulation of questions and candidate answers. Questions that

Group N Rank avg Rank sum p-value

Task 1
RP 16 9.66 154.5

0OO 12 20.96 251.5

Task 2
RP 15 9.2 138

0OO 15 21.8 327

Task 3
RP 14 9.43 132

0.023OO 9 16 144

Task 4
RP 17 12.26 208.5

0.01OO 14 20.54 287.5

Task 5
RP 17 15.53 264

0.992OO 13 15.46 201

Task 6
RP 14 13.75 192.5

0.643OO 14 15.25 213.5

Task 7
RP 18 13.64 245.5

0.028OO 15 21.03 315.5

Task 8
RP 18 17.86 321.5

0.542OO 19 20.08 381.5

Task 9
RP 13 17.12 222.5

0.236OO 16 13.28 212.5

Task 10
RP 5 3.6 18

0.03OO 6 8 48

Figure 10: Mann-Whitney U test for Correct Answers Times.

Figure 11: Scatter plots of Score and programming Skills.
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RP OO
Score Skills Score Skills

Kendall
Score r 1 -0.102 1 *0.358

p 0 0.597 0 0.039

Skills r -0.102 1 *0.358 1

p 0.597 0 0.039 0

Spearman
Score r 1 -0.139 1 *0.452

p 0 0.584 0 0.045

Skills r -0.139 1 *0.452 1

p 0.584 0 0.045 0

Figure 12: Correlation of Score and Skills with Kendall’s τ test
and Spearman’s ρ test. Starred correlations are significant.

are too specific may not require a significant understanding of the
program. For example, the correct answer “3 clicks” for the ques-
tion “How many clicks are needed to activate functionality X” can
be found (with low confidence, admittedly) just by spotting in the
program code a line like if(numberOfClicks == 3)[...]. We tack-
led this problem in two ways. First, we formulated questions and
candidate answers in a way that requires a broad understanding of
the reactive behavior of the program. The questions we formulated
are basically equivalent to “what does this reactive program do?”,
as discussed in Section 3 and shown in Figure 3. We made sure that
subjects cannot simply spot the correct answer by “pattern matching”
over the code. Second, we performed renamings to change too
meaningful names into more neutral ones. For example, in the appli-
cation in Figure 2a the variables position in Line 5 and position
in Line 13 were originally named constantSpeedPosition and
increasingSpeedPosition, which immediately provides an answer
to the question in Figure 4.

Another issue concerns the use of a Web-based WebCompr appli-
cation to complete the tasks. Such a platform can be not immediately
intuitive for some subjects, which may potentially affect the results,
especially timing. To mitigate this effect, we presented the interface
of WebCompr in detail before the experiment started and showed
example screenshots to give the subjects a clear feeling of what
to expect. Also, the experiment starts with warm up tasks to help
subjects getting confidence with the platform.

Internal Validity. Threats to internal validity relate to factors –
other than independent variables under control – that can affect
dependent variables, i.e., influence the results.

While IDEs play a relevant roles in programmer’s activity, the
influence of the IDE on different programming paradigms is unclear
and should be subject of a different study. Other studies facing the
same problem [11, 16, 18] adopted a minimal programming environ-
ment to minimize the effect of the IDE. This problem is especially
relevant for program comprehension, since advanced search tools
and outlines of the program structure can significantly speed up un-
derstanding of the application behavior. It must also be considered
that there is currently no dedicated tool support for RP which would
unfairly disadvantage this paradigm in a comparison that takes the
IDE into account. Our approach based on the WebCompr platform
has the advantage that the impact of tool support is a removed fac-
tor. Text search and syntax highlighting are the only help subjects
receive.

External Validity. Threats to external validity relate to what extent
our findings are generalizable.

A first issue concerns the training subjects received. The com-
parison of two programming techniques is definitely influenced by

the skills of the participants in each. For example, a previous study
on parallel programming in Scala concluded that programmers are
no more productive in Scala than in Java, but subjects trained in
both Scala and Java multicore programming for the study had 4
years experience with Java and no previous knowledge of Scala. In
our case training on RP was minimal (cf. Section 3), yet leads to
observable differences in favor of RP.

Another issue concerns the types and size of the applications we
adopted in the experiment. The type of applications we selected are
representative for typical domains for RP. We argue that these are
also representative for a wide class of reactive applications. Also,
synthetic applications capture the issues of reactivity in general and
are not bound to a specific domain. Concerning size, small-size
applications are necessary to keep the experiment feasible. However,
for what reactivity concerns, we tried to reflect the structure of bigger
applications. For example, in Figure 2 the signal in line Line 10
could be removed collapsing its signal expression with the one in
Line 13. Similar considerations apply for the OO counterpart. The
correctness of such a design is disputable, yet, it is functionally
equivalent to the presented solution. More importantly, however,
intermediate observables are likely to appear in larger applications
because programmers are more likely to use these intermediate
values in multiple places and therefore introduce them in the first
place. To make sure that both the RP version and the OO version of
the applications are representative of the respective style, we asked
the members of our research group to review our code and modified
it according to the feedback we obtained.

The subjects of our experiment are students. Although using
students for empirical studies is common practice, this can affect
the result of the experiment [7]. Professional developers can have
more expertise in a programming technique after applying it on daily
bases for years. A final consideration concerns subjects skills. Klein-
schmager and Hanenberg, in a preliminary study [21], presented
a negative result on using pretests as a valid criteria for measur-
ing programming skills. However, we use 18 preliminary tasks to
increase statistical validity, while in [21] a single task is used to
predict the outcome of other 14 tasks which significantly increases
our confidence on the methodology we adopt.

5.2 Preliminary Interpretation and Outlook
The results of our empirical study show that RP overcomes OO for

program comprehension and, hence, should encourage researchers
to further explore RP. However, the work presented in this paper
does not test the root causes of the difference between RP and OO
w.r.t program comprehension. Further systematic investigation of
this issue should proceed along two lines.

First, more evidence should be collected on how developers rea-
son about RP programs. Exploratory studies, e.g., using either the
think loudly approach or interviews [22, 24] help understanding the
causes of the issues developers face. Far form being systematic, we
collected informal feedback from the subjects in the experiment.
With different wording, subjects reported that, with OO versions,
one has to follow the flow of the whole application to infer the re-
active behavior. On the other hand, with RP, the flow associated
to the reactive behavior is explicit (in practice a signal is defined
together with its expression). Based on this feedback and on our
experience, we believe that the main effect we observed comes from
RP making it easier to reason about data flow i.e., points (i) and (ii)
in Section 2. This conjecture is supported by previous findings on
program comprehension showing that developers understand pro-
grams by building a mental model based on control flow [34] and
data and control flow play a fundamental role in the way program-
mers develop a mental representation of programs [6]. Data flow

571



T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

L.Ratio .038 .527 .036 .042 .008 .019 .586 .253 .573 .88

Fisher .067 .697 .052 .093 .048 .045 .719 1 .709 1

Figure 13: Likelihood Ratio and Fisher’s Exact Test.

determines whether a variable depends on another, a fundamental
aspect of comprehending reactive applications. Detecting depen-
dencies among variables is also a reachability question because it
requires to check whether a change to a variable propagates to the
other. Previous research [23] noticed that reachability questions are
extremely common for developers, they are (i) hard to answer and
time-consuming and (ii) error prone. These findings also provide an
explanation of our results.

Second, further studies are needed to investigate the use and effect
of RP for certain domains in a more systematic way. In our case,
this point concerns the relation between programming tasks and
the effect of RP on program comprehension. In our experiment
design, correctness is a binary variable. Hence, it is unlikely that
splitting the analysis for correctness provides significant results for
each task. For this reason, in Section 4 we analyzed the aggregated
data. However, a preliminary comparison of the correctness in the
OO group and in the RP group for each task is depicted in Figure 13.
Since the hypothesis on the size of expected frequencies for a Chi-
squared test is not met, we used the Likelihood Ratio and Fisher’s
exact test. The tests are still able to detect a significant advantage
of RP for tasks 3, 5 and 6. The difference in the other tasks is not
significant. Interestingly, two out of three significant cases belong
to animations, which has been the domain for which functional-
reactive programming has been originally proposed as a suitable
programming paradigm [9].

6. RELATED WORK
We organize related work as follows. First, we outline recent

research on RP. Second, we provide and overview of existing em-
pirical studies on program comprehension. Last, we enlarge the
scope to other studies and controlled experiments on programming
techniques. We are not aware of any controlled experiment on RP.

Reactive Programming. Reactive extensions of existing lan-
guages include FrTime [3] (Scheme), FlapJax [29] (Javascript),
Scala.react [27] and REScala [40] (Scala). An overview of the avail-
able solutions and of the advanced features each language adds to
those presented in Section 2 can be found in the survey [2].

Current reactive languages have been influenced by several ap-
proaches, often from quite different domains. Functional-reactive
programming was proposed in the strictly functional language
Haskell and applied to graphic animations [8], robotics [19] and
sensor networks [31]. Graphical libraries, like Garnet and Amulet
(Lisp) [30] applied concepts of dataflow programming to relieve the
user from manually updating dependent values. Other researchers
proposed languages where developers can specify constraints. Bidi-
rectional constraints are allowed and in case not all constraints can
be satisfied, a priority rank is applied [13]. Current research direc-
tions include RP in the distributed setting [39] and integration with
the OO paradigm [41].

Studies on Program Comprehension. Pennington [34] shows that
different language designs can influence whether control flow or
data flow questions are easier to understand for programmers. Ra-
malingam and Wiedenbeck [37] organize an empirical study on
program comprehension in the OO and in the imperative style. They

find that novice developers achieve better program comprehension
in the imperative style. However, in contrast to the mental repre-
sentation of imperative programs, which focuses on program-level
knowledge, the mental representation of OO programs focuses on
domain-level knowledge. Corritore and Wiedenbeck substantially
confirm these results [5]

Other researchers organized controlled experiments to investigate
the effect of tools on program comprehension. Quante [36] study the
impact of dynamic object graphs on program understanding. Wettel
et al. [45] show that the CodeCity 3D software visualization tools
significantly increase task correctness and reduce task completion
time. Similarly, Cornelissen et al. [4] evaluate the enhancement of
program comprehension by visualizing execution traces with tools.

From a methodological perspective, Di Penta et al. discuss
the issues of designing studies on program comprehension [7].
Storey [42] reviews the theories that have been formulated for pro-
gram comprehension and their implications on tool design.

Empirical Studies on Programming Techniques. Pankratius et
al. [33] organize an empirical study to compare the use of Scala and
Java to develop multicore software. Contrarily to a common belief,
they find that Scala does neither reduce development effort nor de-
bugging effort. Prechelt presents an empirical study that compares
seven programming languages along directions that include working
time to complete a task and productivity [35]. In [17] researchers
investigate variation of development time using Aspect-oriented Pro-
gramming. Hanenberg organized a series of controlled experiments
to evaluate the effect of types in programming languages. Among
the other results, these experiments do not find a positive effects of
static type systems on development time [16] and show that similar
uncertainties hold for the influence of static type systems on the
usability of undocumented software [28]. Also, it was found that
generic types improve documentation, do not significantly change
development time and reduce extensibility [18].

Beside comparing languages or programming paradigms, re-
searchers focused on specific abstractions and API design, including
requiring parameters to objects constructors [43], effects of method
placement on API learnability [44] and the effect on usability of the
Factory desing pattern [10].

7. CONCLUSION
RP is a paradigm that specifically addresses reactive software.

The advantages of RP over the traditional OO paradigm have been
advocated for some time now, but little evidence has been provided
in practice. In this paper, we presented a controlled experiment
to evaluate the impact of RP on program comprehension. Results
suggest that RP outperforms OO. The RP group provided more
correct results, while not requiring more time to complete the tasks.
In addition, we found evidence that understanding RP program
requires less programming skills than OO programs.

In the future, we will continue working on the evaluation of RP.
First, we plan to repeat the experiment with other subjects to further
strength statistical significance. Second, we want to further investi-
gate which aspects of RP are crucial for improving comprehension
extending the analysis to the domain of the applications.
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Max time 300 300 300 300 600 600 600 600 600 600
TASKS PRELIMINARY TASKS

Subject T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Score Skills

RP

1 60 30 *148 30 92 64 26 77 *113 240 8.00 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 12
2 81 47 117 *66 116 131 78 131 *284 *253 7.00 1 1 1 0 -1 0 0 1 0 0 1 0 1 1 1 1 1 0 10
3 88 49 94 72 107 142 115 88 157 232 10.00 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 14
4 70 *74 200 93 200 *320 67 131 243 *376 7.00 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 15
5 57 38 113 59 94 *64 31 113 135 135 9.00 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 13
6 93 54 149 46 107 *200 124 116 192 *123 8.00 1 1 1 0 -1 0 1 1 -1 0 1 0 0 1 1 1 0 0 9
7 *36 41 111 41 164 43 69 115 *77 123 8.00 0 1 1 0 -1 0 1 1 1 0 1 1 1 1 1 1 1 1 13
8 41 *78 *140 33 127 164 51 126 *172 *159 6.00 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 12
9 91 140 148 56 231 94 123 146 *197 *180 8.00 0 1 1 0 0 -1 0 0 0 0 1 0 1 1 1 1 1 1 9

10 54 98 137 80 194 203 53 196 235 *232 9.00 1 1 1 -1 1 0 0 0 0 0 -1 0 1 1 0 0 0 -1 6
11 84 *125 159 67 316 133 191 113 157 *517 8.00 -1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 9
12 *187 129 260 119 563 299 50 256 365 *62 8.00 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 -1 0 0 7
13 97 42 173 45 *164 162 135 79 173 *403 8.00 0 1 1 0 0 1 1 1 0 1 -1 0 1 1 0 1 0 0 9
14 64 46 69 35 166 117 87 158 139 *119 9.00 1 1 1 1 1 -1 1 0 1 0 1 1 0 1 0 -1 1 0 11
15 51 45 *108 43 87 69 78 100 196 *166 8.00 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 0 12
16 66 31 *139 45 137 *154 95 109 190 *269 7.00 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 14
17 76 57 138 56 174 318 216 136 234 *342 9.00 1 1 1 0 0 0 0 1 0 0 1 0 1 1 1 0 1 1 10
18 88 36 160 46 111 289 58 98 123 235 10.00 1 0 1 0 1 1 1 1 1 1 0 0 -1 1 1 1 0 0 11

Correct Median 73.00 46.00 143.00 46.00 137.00 137.50 78.00 115.50 190.00 232.00 8.00 Median 11
Average 72.56 58.87 144.86 56.82 175.65 159.14 91.50 127.11 195.31 193.00 8.17 Average 10.89

All Median 73 48 139.5 51 150.5 148 78 115.5 181.5 232
Average 76.89 64.44 142.39 57.33 175.00 164.78 91.50 127.11 187.89 231.44

OO

19 95 157 *165 95 232 176 170 254 292 *384 8.00 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 11
20 165 126 *95 94 99 285 96 150 188 165 9.00 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 211 232 129 46 *336 208 *356 *46 117 *563 6.00 1 1 1 -1 0 1 0 0 0 0 1 0 1 1 0 1 0 0 8
22 132 102 *155 59 137 243 71 199 100 332 9.00 1 1 1 -1 1 1 0 0 1 0 1 0 1 1 1 1 0 0 11
23 104 142 282 *65 282 *135 108 107 206 *224 7.00 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 14
24 176 151 247 129 250 107 128 98 122 297 10.00 1 1 1 1 1 0 0 -1 -1 0 1 0 1 1 0 -1 1 0 9
25 164 132 *137 151 105 302 288 108 69 *365 8.00 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 0 10
26 *96 167 299 72 69 98 68 131 111 *149 8.00 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 11
27 *60 *98 *207 *129 198 *392 *121 174 *213 *210 2.00 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 1
28 *129 *183 *112 *145 92 269 198 300 221 *162 5.00 1 1 -1 1 -1 0 1 1 0 0 1 0 1 0 1 0 0 1 9
29 *123 *89 211 *141 222 128 124 179 154 303 7.00 1 1 1 0 1 -1 0 1 1 0 1 -1 1 1 1 0 0 0 10
30 *79 100 251 *140 *150 *185 *119 146 365 319 5.00 0 1 1 0 1 0 0 -1 0 0 0 0 1 1 0 1 0 0 6
31 160 258 *257 51 114 *320 145 198 181 *121 7.00 1 -1 1 0 1 1 1 1 1 0 0 -1 1 1 1 0 0 0 10
32 *89 97 164 49 65 52 92 113 131 *132 8.00 1 0 1 0 -1 0 1 1 1 0 1 -1 -1 1 1 1 0 1 10
33 97 200 *294 173 445 394 187 106 101 565 9.00 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 16
34 *83 *140 115 92 *131 94 *77 86 *206 *121 4.00 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 0 0 9
35 133 118 196 150 *200 *219 89 110 174 *312 7.00 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 12
36 58 59 *222 74 *211 141 102 128 270 *221 7.00 1 1 1 1 -1 1 1 1 1 0 1 0 1 1 1 1 0 0 13
37 87 89 *80 35 *128 77 80 100 *92 *88 6.00 1 1 1 0 1 -1 0 1 0 0 1 0 0 1 0 1 0 0 8
38 *116 *233 *269 *38 *447 *10 *418 12 *572 *17 1.00 -1 0 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 0 7

Correct Median 132.50 132.00 211.00 83.00 137.00 158.50 108.00 128.00 164.00 311.00 7.00 Median 10
Average 132.23 141.36 210.50 89.54 176.33 174.73 127.71 134.61 165.73 354.50 6.65 Average 9.25

All Median 110 136 201.5 93 174 180.5 120 120.5 177.5 222.5
Average 117.85 143.65 194.35 96.40 195.65 191.75 151.85 137.25 194.25 252.50

Figure 14: Data and descriptive statistics.

9. DATA
For reproducibility of the experiment and the analysis, we report

the collected data in Figure 14. For each task (Columns 3-12), we
show the amount of time in seconds required for each subject to
complete the task (Lines 4-21 for the RP group and Lines 26-45 for
the OO group). Asterisks “*” indicate wrong answers. Descriptive
statistics for each tasks consider all answers (Lines 24-25 and 48-
49) and correct answers only (Lines 22-23 and 46-47). Column
13 reports the amount of correct answers (Score) for each subject.
Columns 14-31 show the results of the preliminary tasks to asses
subjects skills: 1 for correct answers, -1 for wrong answers and 0
for Don’t know answers. Column 32 displays the skills results, their
median and average.

Figure 15 shows some metrics for the applications used in the
tasks including size as non-comment lines of code counted with
CLOC4. For the RP version: Number of signals/vars, number of
events and number of handlers. For the OO version: Number of
handlers and number of observables.
4http://cloc.sourceforge.net/

Task RP OO RP OO
LOCs LOCs sig/vars events hdlr obs hdlr

T1 9 24 6 0 0 6 5

T2 10 28 4 0 0 4 4

T3 9 38 6 0 0 6 8

T4 12 31 7 0 0 7 8

T5 46 54 5 4 1 5 8

T6 41 49 5 4 1 5 8

T7 38 47 4 2 1 4 5

T8 32 43 7 2 0 2 2

T9 42 49 5 2 1 6 4

T10 61 82 6 6 1 7 7

Figure 15: Main metrics for the tasks.
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